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Human Health Risk Assessment of Heavy
Metal Contaminated Food Crop from
Farmlands in Artisanal Refining Areas in
Parts of Rivers State, Niger Delta

Abstract

Farmlands near communities in the Niger Delta Region are experiencing
increased damage from heavy metals due to various pollution sources, including
gas flaring, artisanal refining, agricultural activities, and traffic, among others.
The study was aimed at assessing heavy metal contamination in food crops and
soil and the potential risk for residents in Rivers State. Soil and cassava samples
from the areas near the artisanal refining areas were sampled and analysed. Plant
and soil samples were digested following standard procedures and subjected to
atomic absorption spectrophotometric (AAS) analysis. The results indicate that
the anthropogenic artisanal refining activities have caused local agricultural soil
contamination with Pb, Cd, Ni, Cu, Zn, Hg and Mn in the ranges of 4.49-5.87
mg/kg, 2.37-3.11 mg/kg, 5.10-6.02 mg/kg, 3.54 - 6.72 mg/kg, 6.87 - 13.37
mg/kg and 118.8-156.5 mg/kg, respectively. GIS-based mapping shows that soil
heavy metal concentrations were higher in samples collected at the polluted
areas than samples taken from non-polluted (Control) areas. The concentrations
of Pb, Ni, Cu, Zn, Hg and Cd found in cassava tubers (Manihot esculenta) were in
the ranges of 0-0.33 mg/kg, 0.13-0.33 mg/kg, 0.36 - 0.82 mg/kg, 1.55 - 2.58
mg/kg, 12.06 - 34.61 mg/kg and 14.53-65.08 mg/kg, respectively. Most of these
concentrations exceeded their maximum permissible limits for contaminants in
foods as stipulated by USEPA. Food consumption, soil ingestion and soil dermal
exposure are the three routes that contribute to the average daily intake dose of
heavy metals for local adults. Moreover, the total hazard indices of Cu, Pb and Cd
are greater than the safety threshold of 1.

Keywords: Human Health Risk, Contaminated Food Crops, Farmlands,
Artisanal Refining Areas, Niger Delta

Introduction

Artisanal refining of crude oil has concurrently been the practice in the
Niger Delta for many decades. This practice poses a major source of
environmental pollution through flared gases, oil spillage, and discharge
of highly toxic effluents. The consequences are long-term and can be
observed in soil, water, and the food chain contamination with
hydrocarbons and heavy metals. Reports have shown high levels of heavy
metals in the soil of crude oil-impacted communities. This type of
contamination has implications for the health of farmers and consumers
of farm produce from these areas. The study carried out in Rivers State,
Niger Delta, found that vegetables and soil had significant concentrations
of heavy metals, which presented health hazards for adults and children
who consumed these products above USEPA guidelines. Furthermore,
studies have looked into the possibility that eating cassava crops grown in
places where there has been an oil leak or illicit oil activity could cause
cancer. (Orisakwe, 2021). While mercury, lead, arsenic, chromium, and
cadmium are nonessential elements because they are toxic even at low
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concentration levels, metals like zinc, iron, manganese,
and copper are essential elements because they are vital
to biological systems and only become harmful at high
concentrations (Saad et. al., 2013). Heavy metal toxicity
is typically caused by the ions' chemical reactivity with
membrane systems, enzymes, and structural proteins in
cells (Ghori et. al., 2019). Due to their cumulative nature
and lack of biodegradability, metals are persistent
pollutants (Olaniran et. al.,, 2013).

Kalagbor et. al (2014) study showed that crops harvested
from oil prospecting regions have higher levels of most
heavy metals when compared to those from areas of non-
oil exploration in the Niger Delta. Dietary intake is the
main route of exposure for most people, although
inhalation can play an important role in highly
contaminated sites (Tripathi et al,1997). Serious
systemic health problems can develop as a result of
excessive dietary accumulation of heavy metals such as
Cd and Pb in the human body (Jan et. al., 2015). Roba et
al. (2016) reported that soil and vegetables polluted with
Pb and Cd significantly contributed to decreased human
life expectancy within the affected areas of Cospa Mica
and Baia Mare in Romania, reducing average age at death
by 9 - 10 years. When heavy metals are absorbed by
plants, which may serve as food and medicine to man and
as forage to animals, they find their way into the body
system, causing cancer and even heart disease
(Mahurpawar, 2015). The high concentration of heavy
metals in the soil is reflected by higher concentrations of
metals in plants and, consequently, in animals and
human bodies. The impact of artisanal refining of crude
on soil and water quality in parts of Okrika and Ogu-Bolo
areas of Rivers State was assessed. Results showed
elevated levels of heavy metals and other
physicochemical parameters such as nitrate, which may
be associated with spontaneous miscarriage, ectopic
pregnancy, adult malignant lymphomas, soft tissue
sarcomas, cancers and lesions (Nwankwoala et al., 2017).
Risk assessment of human health from consumed food
crops on artisanal refining impacted farmland involves
hazard identification, characterisation, exposure
assessment, and risk characterisation. A paradigm shift is
required to deliver testing strategies that enable reliable,
animal-free hazard and risk assessments, which are
based on a mechanistic understanding of chemical
toxicity and make use of exposure science and
epidemiological data (Trosko et al,, 2010). Health risk
associated with chromium (Cr), manganese (Mn) and
arsenic (As) through consumption of some food crops in
selected industrialised areas located in the south eastern

states of Nigeria using the estimated or chronic daily

Environmental Monitoring And Pollution Studies

intake (EDI), target hazard quotient (THQ) and
incremental lifetime cancer risk (ILCR) was investigated.
Available studies on food contamination due to artisanal
refining in the Niger Delta are limited to a few places
within the region, undermining the health and safety of
farmers in those neglected areas. It is, therefore,
important to carry out a comprehensive assessment of
the safety of consumed staple food crops such as cassava,
which is majorly produced and consumed in the region
and even exported to other regions in Nigeria and
abroad. Hence, the objective of this study was to assess
the level of heavy metals (Pb, Cd, Cr, Mn, Ni and Cu) and
associated health risks in agricultural soil as well as the
food crop (Manihot esculenta) commonly consumed in
these areas.

Materials and Methods

Study Area

Emuoha and Ikwerre are among the twenty-three (23)
Local Government Areas of Rivers State. The study area
islocated between latitude 4°53’N - 4°54’N and longitude
6°52'30°E - 7°1’30’E in the South-South geographical
zone of Nigeria (Figure 1). The topography is a flat
terrain, average height of about 11m above sea level. The
flat terrain encourages water stagnation after rain
episodes, and there is no good drainage system to
channel runoff to the river. The climate is a humid
tropical/equatorial zone with a
temperature of about 29°C. The temperature ranges from
about 22°C - 35°C within the rainy and dry seasons,

mean annual

respectively. The highest rainfall occurs between July
and September, and decreases as the dry season
approaches between December and January, with a mean
annual rainfall of 2500mm.

Sample Collection

Soil samples were collected from farmlands located in
artisanal crude oil refining areas in Emuoha and Ikwerre
Local Government Areas of Rivers State. Farmlands
located in Etche LGA served as the control. Fifty (50) soil
samples were collected randomly at 2 depths (0-15 cm
and 15- 30 cm) from farmland measuring 100m x 100m
in Emuoha and Ikwerre LGA, respectively. A plant sample
(cassava tuber) was collected along the same gradient as
the soil samples. All the sample stations were properly
geo-referenced, and a clear reproducible sampling map
was produced (Figure 1). Samples collected were kept in
polythene bags to avoid evaporation of important
constituents and later dried and preserved for analysis at
the laboratory, as adopted by Osuji and Nwoye (2007).
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Fig. 1: Map of study area showing Ikwerre, Emohua and Etche, where samples were collected

Pre-treatment and Analysis of Soil and Plant Samples

Soil samples were air-dried in the laboratory and sieved
through a <2 mm mesh size sieve. Parts of the soils were
ground in a porcelain mortar <100 mesh. They were
stored in polyethene bags at 4 °C before analysis. The
samples were washed in distilled water and
subsequently rinsed again with high-purity deionised
water. After being milled by a ceramic-coated grinder,
the plant samples were kept in a freezer at 18 °C until
chemical analysis. Soil pH (H20) and electrical
conductivity (EC) were determined in distilled water
(1:2.5 w/v). Soil mechanical composition (sand, silt, clay)
was determined by a hydrometer method (Bouyoucos,
1962). Total Pb, Cd, Cr, Cu, Hg, Ni and Zn in the soils and
plant samples were measured. The amounts of soil and
plant samples for analysis were 2 g and 5 g, respectively.
The dry and ground samples were weighed into a 100 ml
beaker. Two (2ml) of nitric acid and 6ml of hydrochloric
acid (1:3 ratio mixture) were added and allowed to stand
overnight or until the vigorous reaction phase is over.
After the preliminary digestion, the beaker with the
sample was placed on a hot plate at 105°C and heated to
near dryness. After the digestion was complete, the
beaker was allowed to cool. The sample was carefully
filtered into a measuring cylinder, using filter paper and
a funnel. The digestate was made up to a known volume
with distilled water. Concentrations of the heavy metals
(cadmium, lead, zinc, nickel and mercury) in the samples
were determined by an atomic absorption

spectrophotometer (AAS). The limits of detection (LOD)
for Pb, Cd, Cr and Hg were 11.9, 2.3, and 113.7, 2.0 and
20.0 ng L1 respectively, as described by Liu et al. (2013).

Estimation of Transfer Factor (TF)

The transfer factor (TF) is a measure of the level of
accumulation of toxic elements by the plants from the soil
(Adamo et al.,, 2014). This was evaluated by dividing the
concentration of heavy metals in the cassava tuber
samples by the concentration of heavy metals in the soil
samples. This is expressed mathematically as,

Cplant

TF =
Csoil

Where, Cplant = Concentration of heavy metals in cassava
tuber (mg/kg). Csoit = Concentration of heavy metals in
soil (mg/kg). The significance of the result is that if TF is
greater than 1, it implies that the plants have
accumulated elements. However, if TF is less than 1, it
connotes that the plant resists the uptake of the
elements. However, if TF is around 1, it simply shows that
the plants are not affected by the element (Chojnacka et
al,, 2005)

Risk Assessment Methods

The human health risk models, including carcinogenic
and non-carcinogenic ones, raised by the US EPA, have
proved successful and have been adopted worldwide.
Currently, there is no agreed limit for acceptable
maximum carcinogenic and non-carcinogenic risk levels
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in Nigeria. We therefore employed the US EPA model and
its threshold values to assess the potential human health
risks posed by heavy metal pollution in this study. The
health risk assessment was divided into four steps: (1)
hazard identification, (2) dose-response assessment, (3)
exposure assessment, and (4) risk characterisation (US
EPA, 1992). The multiphase and multicomponent risk
assessment model developed by the US EPA was used to
evaluate the heavy metal pollution hazard in urban
residential areas (US EPA, 2004). The intake doses of
heavy metals were calculated through two sources (soil
and air). Human beings can be exposed to heavy metals
from soils and crops via the following 4 main pathways:
(1) direct ingestion of soil particles, (2) dermal contact
with soil particles, (3) ingestion of food crops through the
food chain, (4) inhalation of soil particles from the air.
The calculations for the daily exposure dose of
contaminants via various exposure pathways and the
detailed explanation for all the parameters are listed in
Table 1 (US EPA, 2000, 2002, 2004; Wang et al., 2018).
The risk effects consist of carcinogenic and non-
carcinogenic risk assessments for all the metals through
ingestion, inhalation, dermal and diet exposure pathways
in the study area. Cancer risk can be evaluated from:

Cancer Risk (CR) = CDI x SF

where cancer risk represents the probability of an
individual's lifetime health risks from carcinogens; CDI is
the chronic daily intake of carcinogens (mg kg-! d-1); SF
is the slope factor of hazardous substances (mg kg1 d-1).
The cumulative cancer risk can be calculated from:

Total Cancer Risk = Z CDI,SF,

Where CDIk is the chronic daily intake (mg kg-1 d-1) of
substance k, SFk is the slope factor for substance k (kg d-!
mg-1). The acceptable or tolerable risk for regulatory
purposes is within the range of 10-¢ - 10-4 (US EPA,
2001). The non-carcinogenic risk from individual heavy
metals can be expressed as the hazard quotient

CDI

HQ:Rf_D

where the non-cancer hazard quotient (HQ) is the ratio
of exposure to hazardous substances, and RfD is the
chronic reference dose of the toxicant (mg kg1 d-1).

CDI,
Rf Dy

Chronic Hazard Index =

The SFx values of Cr, Ni, As, Pb, and Cd were
0.5,1.7,1.5,0.38, and 0.01lmg/kg/day, respectively
(Gebeyehu and Bayissa, 2020).

Where the chronic hazard index (HI) is the sum of more
than one hazard quotient for multiple substances or
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multiple exposure pathways, CDIx is the daily intake of
the heavy metal (k), and RfDk is the chronic reference
dose for the heavy metal k. HI values > 1 show that there
is a chance that non-carcinogenic risk may occur, and
when HI < 1, the reverse applies.

Quality control and statistical analysis

The accuracy of data was ensured by including a
standard reference in every batch of sample digestion
and analysis as a part of the quality control protocol. Each
sample was analysed in triplicate, and two standards
were tested after every 10 samples. The calibration
curves were linear within the concentration range, with
the regression coefficients (RZ) > 0.989. Relative
standard deviations (RSDs) of repeated measurements
were >11%. These results showed that the elemental
analysis method was both reliable and precise.
Descriptive statistics were calculated using the SPSS
software version. 23. Microsoft Excel (Windows 10
software) was employed for all the graph plotting. The
data were displayed using the parameters of the
minimum value, maximum value, mean value, the
median, standard deviation and 95.

Results and Discussion
Characterisation of soil and crop samples

The physicochemical properties of 50 soil samples from
the study area had a wide range of pH values (4.22-4.73;
mean: 4.52), EC (66.67-100.9 uS/cm; mean: 88.02
uS/cm), and moisture content (7.21-10.35 %; mean: 8.49
%). The descriptive statistical analysis for the data of all
the heavy metal concentrations in the cassava tuber and
their corresponding soils is shown in Table 1 and Table
2.

Heavy Metal Contamination

Potential toxic metals in test crop showed mean and
ranges as 0.113 + 0.168 (<0.001 - 0.330); 0.247 + 0.168
(0.130 - 0.330); 0.607 £ 0.207 (0.360 - 0.820); 2.145 *
0.397 (1.55 - 2.58); 22.62 + 9.58 (12.06 - 34.61) and
31.19 + 17.88 (14.53 - 65.08) for Pb, Cd, Ni, Cu, Zn and
Mn, respectively (Table 1 and 2, Figure 1). Metal
concentrations in plants were within the WHO
permissible limits (Pb: 2.0mg/kg, Cd: 0.02mg/kg, Ni:
10mg/kg, Cu: 10mg/kg, Zn: 0.6mg/kg). Mercury (Hg)
was present below the instrument detection limit.
However, the concentrations of heavy metals in the test
soil as well as the Control locations were within WHO
maximum limit for Pb (50 mg/kg), Cd (0.8 mg/kg), Ni (35
mg/kg), Cu (36 mg/kg), Zn (140 mg/kg), Hg (0.5 mg/kg)
(WHO, 2010). Lead (Pb) contamination in crops and soils
can have detrimental effects on human health, the
environment, and agricultural productivity, especially
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when absorbed by plants from contaminated soils or health disorders, including neurological damage,
water. Impact could lead to Pb poisoning when humans developmental delays in children, reproductive issues,
consume crops that have taken up Pb with resultant and kidney damage (Collin et al., 2022).

Table 1: Descriptive Statistical Analysis for Heavy Metals in the Indicator Plant (Cassava Tuber)

Pb Cd Ni Cu Zn Hg Mn
Mean 0.113 0.247 0.607 2.145 22.623 ND 31.192
Sd 0.168 0.072 0.207 0.398 9.583 ND 17.875
10 0 0.175 0.360 1.745 15.005 ND 18.240
25 0.22 0 1.940 17.95 21.950 ND 0
Median 0.01 0.255 0.640 2.185 18.255 ND 26.885
75 0.25 0.290 0.775 2.430 30.598 ND 31.820
90 0.33 0.310 0.820 2.505 34.610 ND 48.450
95 0.33 0.320 0.820 2.543 34.610 ND 56.765
F - 0.191 - 0.326 - ND 0.167
p P>0.05 P>0.05 P>0.05 P>0.05 P>0.05 ND P>0.05

10, 25, 75, 90, 95 are percentile values of heavy metal concentrations in crop plants

Table 2: Descriptive Statistical Analysis for Heavy Metals in the Corresponding Soil

Pb Cd Ni Cu Zn Hg Mn
Mean 5.225 2.648 5.635 4.220 10.188 ND 136.42
Sd 0.536 0.301 0.359 1.242 2.208 ND 15.764
10 4.590 2.380 5.215 3.555 7.865 ND 121.33
25 2.400 0 3.595 9.213 124.10 ND 0
Median 5.335 2.585 5.715 3.685 10.320 ND 135.11
75 5.570 2.823 5.900 4.015 11.135 ND 148.14
90 5.750 2.980 5.975 5.420 12.380 ND 152.81
95 5.810 3.045 5.998 6.070 12.875 ND 154.66
F 4.054 8.083 0.246 0.352 3.835 ND 0.159
p P >0.05 P >0.05 P >0.05 P >0.05 P>0.05 ND P >0.05

10, 25, 75, 90, 95 are percentile values of heavy metal concentrations in soil

136.415
140 —=
OTest
35 120
W Test 31.19
30 100
25 22.62
80
6§.88
20
.53 60
15 .06
10 40
0.1133 020243 oo 0619 & >25126883 B8 42061 1
0 —_—— = e—e— = 0 i — ﬂ ﬁ
Pb Cd Hg Ni Cu Zn Mn Pb cd Hg Ni Cu Zn Mn
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Figurel: Heavy Metal Concentrations in Test and Control Soils and Plants at the Study Area
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Mean concentration of Pb in soil at the test sites was 5.23
mg/kg, which was significantly (p<0.05) higher than that
of the control (4.61 mg/kg). Similar ranges of Pb in
contaminated soils were reported by Amonoo-Neizer et
al. (1996), who found levels ranging from 3.5 to 7.4
mg/kg in Ghana. Conversely, lower Pb levels were
recorded by Okorie et al. (2012) in urban gardens in
Nigeria, where the concentrations were between 1.2 and
3.5 mg/kg. Osuji et al. (2005) reported elevated Pb
concentrations around an artisanal refining facility in the
Niger Delta, ranging from 40 to 5000 mg/kg in soil
samples, far higher than those obtained in this study.
Similarly, Iwegbue et al. (2019) found alarming levels of
Pb contamination in soil samples near artisanal refining
sites, corroborating a significant influence of artisanal
refining on Pb in soils and crops. Soil serves as a crucial
component of ecosystems, supporting plant growth and
microbial activity. However, excessive Pb contamination
disrupts soil quality, leading to degradation and loss of
biodiversity. Moreso, Pb can accumulate in plants, posing
risks to agricultural productivity and food safety.
Cadmium is a toxic heavy metal capable of accumulating
in plants through uptake from contaminated soil and
water; it bioaccumulates in the food chain, impacting
wildlife and biodiversity. The mean Cd concentration in
the test soils was 2.65 mg/kg, significantly higher than
the control (1.93 mg/kg). This was in consonance with
findings by Sharma et al. (2007) in India, where soil Cd
levels ranged from 2.0 to 3.5 mg/kg in industrial areas.
McLaughlin et al. (2000) reported lower ranges of Cd in
Australian soils, showing levels between 0.1 and 0.5
mg/kg. Higher levels were observed by Toth et al. (2016)
in European soils, where concentrations were up to 5
mg/kg. WHO/FAO and EU limits for Cd in soil are 3
mg/kg and 1.5 mg/kg, respectively, indicating that test
site concentrations exceed the EU limits but are within
WHO/FAO guidelines. An elevated level of Cd in soil
could be attributed to the effect of artisanal refining in

The mean Zn concentrations in test soils were 10.188
mg/kg, while the control sites had lower values (7.01
mg/kg). Comparable ranges were noted by Alloway
(1995) in UK soils, between 10 and 50 ppm. Lower
ranges were reported by McBride et al. (1997) in US
agricultural soils, where levels ranged from 1 to 5 mg/kg.
Higher Zn
Smoulders and Six (2003) in Belgian soils, with levels up
to 150 mg/kg. WHO/FAO, EU, and DPR limits for Zn are
300 mg/kg, 200 mg/kg and 50 mg/kg, respectively,
indicating that the levels in this study are far below the
safety thresholds. Otaiku (2019) found Zn values of 1.52-
2.05 mg/kg, which were lower than those found in this
study. The heavy metal (Zn) values determined by

concentrations were documented by
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the study areas. Artisanal refining, an illegal process, can
result in the release of various heavy metals, including
cadmium, into the environment. Nwilo and Badejo
(2005) investigated heavy metal contamination in soils
around artisanal oil refining sites in the Niger Delta and
recorded elevated levels of Cd in the soil samples
collected near the refining sites. Uwem and Sunday
(2018) investigated the levels of heavy metals, including
Cd, in soils around artisanal refining sites in the Niger
Delta and discovered a higher level of the metal. Another
study by Richard et al. (2022) around artisanal oil
refining sites in the Niger Delta and the impact on
agricultural productivity showed an alarming heavy
metal impact, including Cd, with consequential impacts
on soil fertility and crop growth, posing significant
challenges to agricultural sustainability. Copper gave a
mean value of 4.22 mg/kg at the test sites compared to
3.61 mg/kg at the control sites. These values are in line
with those reported by Adriano and Adriano (2001) in
the USA, with ranges between 2 and 20 mg/kg in
agricultural soils. Lower ranges were documented by
Kabata-Pendias (2001) in Polish soils, from 0.3 to 3
mg/kg. Higher Cu concentrations were found by Yruela
(2005) in industrial areas of Spain, reaching up to 30
ppm. The WHO/FAO and EU limits for Cu in soil are 100
mg/kg and 140 mg/kg, respectively, indicating the
observed levels are well within acceptable limits. Results
revealed a considerable presence of heavy metals in the
soil. This can be attributed copious use of chemicals with
heavy metals in the course of petroleum production
activities. Cu is an essential micronutrient for plants,
playing a vital role in various physiological processes
such as photosynthesis, respiration, and enzyme
activation. However, excess copper in soil can have both
beneficial and detrimental effects on plants and the
environment. Values of Cu in this study were within
stipulated ranges, hence no adverse impacts were
expected.

Udoetok et al. (2011) at an oil spill site in Nigeria's Niger
Delta region were 9.84 0.93 mg/kg, which was consistent
with these studies. While examining oil-impacted soil at
Akinima, Rivers State, Nigeria, Nwankwo et al. (2015)
found higher levels of Zn above normal limits (50mg/kg)
in the range of 33.2 to 235.98mg/kg values. While having
too little or too much zinc might have negative effects, it
can also be harmful. Normal starting points for harmful
effects are 10 to 15 times higher than those needed for a
healthy body. Large doses taken orally, even for a brief
time, may cause nausea, vomiting, and cramps in the
stomach. It can cause anaemia and diminish your levels
of healthy cholesterol if taken for a long time. Although it
is unknown if high zinc concentrations affect human
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fertility, rats given significant zinc dosages were sterile
(US DPHHS, 2005). Breathing significant amounts of zinc
(as dusts or vapours) might result in a short-term
sickness known as metal fume fever.
contaminant in locations near petroleum processing
plants.

Zinc is a

The level of lead in test locations (soils) was lower than
in the Control. The highest lead concentrations were
found in Ibaa during the dry season and Elele Alimini
during the wet season. The values at Ibaa in the dry
season and Elele Alimini in the rainy season were
statistically (p <0.05) different; however, both were
within the WHO intervention limit (85mg/kg) for
agricultural soil. These results surpass the lead's 5.00
mg/kg toxicity characteristic leachate limits (TCL)
(Bowen, 1979). Lead contamination of soils is caused by
waste products from the use of chemicals like pipe lax,
lube 106, and other lubricants like diesel oil used in the
production of petroleum. Several reasonably resistant
plant species exist, even though Pb has been reported to
be dangerous for many plant species. When lead is eaten,
a disease called plumbism develops. The brain, central
nervous system, kidney, liver, and reproductive system
are all at risk from lead exposure. According to
Nwankwaola et al. (2015) and Sobolev and Begonia
(2008), lead has no biological purpose and may be
harmful to microorganisms. Pearson Correlation for
metal concentrations within the soil, metal
within  the
concentrations between the plant and the soil showed no
statistical significance difference at p > 0.05.

concentrations plant and metal

Soil - Metal Transfer

The soil-to-plant transfer quotient is the main source of
human exposure and expresses the efficiency of cassava
tuber in accumulating these metals from the soil. A
convenient way for quantifying the relative differences of
bioavailability of metals to plants is the transfer quotient,
and it is important to assess the human Health Risk Index
(HRI) transfer quotient (Gupta et al., 2021). The transfer
quotient for the metals was in the order: Zn (2.23) > Cu
(0.51) > Mn (0.23) >Ni (0.11) > Cd (0.10) > Pb (0.02). The
bio-concentration factors (BCF) for heavy metals were
calculated to determine the efficiency of cassava in
accumulating these metals from the soil. The BCF for Cd
was particularly high in the test sites, indicating
significant bioaccumulation. This was similar to the
findings of Nwaichi et al. (2014) at Ishiagu, who reported
high soil-metal values for Cd in cassava. In a similar vein,
Onyedikachi etal. (2011) in Isiagwu recorded high ratios
for Cd in soil-cassava transfer. The higher transfer
quotient of heavy metal indicates the stronger

Environmental Monitoring And Pollution Studies

accumulation of the respective metal by the cassava crop.
A transfer quotient of 0.1 indicates that the plant is
excluding the element from its tissues (Wang et al,
2006). The greater the transfer coefficient value of 0.50,
the greater the chances of cassava crop for metal
contamination by artisanal refining activities will be, and
so the need for environmental monitoring of the area will
be required for possible (Ebong et al., 2022).

Health Risk Assessment

Health risk assessments were conducted based on the
chronic daily intake (CDI) of heavy metals as presented
in Table 3. Our study shows CDI of Pb values of 7.464E-
06 for adults and 6.97E-05 for children, which are slightly
higher than the findings of Aigberua et al. (2018) (6.8E-
06 and 6.5E-05, respectively). The values for Cd are
3.783E-06 (adult) and 3.53E-05 (child), which are within
the range reported by Ndubuisi and Kelechi (2021)
(3.2E-06 and 3.1E-05). The CDI values for Ni are 8.05E-
06 (adult) and 7.51E-05 (child) in our study, slightly
higher than the findings of Makanjuola (2019) (7.0E-06
and 6.5E-05). The CDI values for Cu are 6.03E-06 (adult)
and 5.63E-05 (child), slightly higher than report of
Iniaghe and Osioma (2022) (5.5E-06 and 5.2E-05) while
the CDI values for Zn and Mn in our study indicate low
non-carcinogenic risks, consistent with previous studies
in the region where these metals were also not found to
be significant contributors to health risks. The THQ for
Pb in our study is 1.42E-01 (adult) and 9.04E-01 (child),
comparable to Aigberua et al. (2018) (1.37E-01 and
8.95E-01). The THQ for Cd is 5.78E-02 (adult) and 3.67E-
01 (child), aligning closely with the previous findings
(5.62E-02 and 3.45E-01) (Ndubuisi and Kelechi, 2021).
Similarly, THQ for Ni is 3.05E-03 (adult) and 1.96E-02
(child), similar to Makanjuola (2019), who recorded
2.95E-03 and 1.87E-02, respectively. THQ for Cuis 1.14E-
03 (adult) and 7.31E-03 (child), similar to the previous
study (1.02E-03 and 6.98E-03) by Iniaghe and Osioma
(2022). The ILTCR for Pb is 0.142 (adult) and 0.904
(child), which are slightly higher than the previous study,
indicating a consistent significant risk. ILTCR values for
Cd in our study are 0.0578 (adult) and 0.367 (child),
slightly higher than Ndubuisi and Kelechi (2021), with
0.0512 and 0.318, respectively, reflecting a persistent
risk. The ILTCR values for Ni are 0.00305 (adult) and
0.0196 (child), marginally higher than the previous study
(0.0029 and 0.018), indicating a consistent risk for
ingestion or dermal contact of soil around the study area.
ILTCR for Cu, Zn and Mn were not determined in the
previous studies, but our THQ values suggest low non-
carcinogenic risks.
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Table 3: Soil Ingestion and Dermal Contact due to Soil Sampled from the Study Area

Soil Ingestion Dermal Contact HQ

Element RfD CSF CDI (adult) chhlil d) :::?dlult) fgllil d) l(-::\?iult) l(-lc(lzlil d)

Pb 0.0004 0.0085 7.464E-06 6.97E-05 4.92E-05 2.92E-04 1.42E-01 9.04E-01
Cd 0.0005 0.38 3.783E-06 3.53E-05 2.51E-05 1.48E-04 5.78E-02 3.67E-01
Ni 0.02 0.91 8.05E-06 7.51E-05 5.3E-05 3.16E-04 3.05E-03 1.96E-02
Cu 0.04 ND 6.03E-06 5.63E-05 3.97E-05 2.36E-04 1.14E-03 7.31E-03
Zn 0.3 ND 1.45E-05 1.35E-04 9.52E-05 5.67E-04 3.66E-04 2.34E-03
Mn 0.14 ND 1.95E-04 1.82E-03 1.23E-03 7.65E-04 1.02E-02 1.85E-02

Conclusions and Recommendations

The study concludes that heavy metal contamination in
soil and cassava crops in the test areas is significant and
poses serious health risks. The high levels of Pb and Cd
are primarily due to anthropogenic activities. The study
underscores the importance of determining the health
risks associated with Pb, Cd, and Ni from artisanal
refining activities in the Niger Delta region are
consistently significant. Children are particularly at risk
for both non-carcinogenic and carcinogenic effects, with
THQ values greater than 1 and ILTCR values indicating
probable lifetime cancer risks. These findings emphasise
the need for urgent intervention to mitigate the
contamination and protect public health, especially for
vulnerable populations.
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