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Abstract 

 

Introduction 

With rapid anthropogenic activities such as urbanisation and industrialisation 

environmental media such as aquatic environments are increasingly polluted with 

potentially toxic elements (PTEs) with different level of effect on the aquatic environment 

and its components (Ahmeed et al., 2015; Ali et al., 2016; Bai et al., 2023). The PTEs are 

naturally occurring elements in the human environment consisting of metals, semimetals, 

and non-metals (Afolabi et al., 2024) which are formed as a result of weathering action of 

The concentration of potentially toxic elements (PTEs) in the aquatic environment can be influenced by 
naturally occurring activities, anthropogenic and atmospheric deposition. With various multivariate 
statistical tools, the apportionment of the PTEs  in the environment can be established. The source 
apportionment and concentration of PTEs in surface water and sediments of Okulu-Aleto river, Rivers 
state Nigeria was determined. Based on laboratory analysis standard (American Public Health 
Association), PTEs such as Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Zinc (Zn), Lead (Pb) 
and Iron (Fe) were considered. The pH of the surface water (6.27 – 6.65) and sediment (6.54-6.85) tends 
towards neutral while the mean concentration of electrical conductivity (EC) at  13740 µs/cm for 
surface water and 1376.75µs/cm for sediment. The mean concentration showed that the PTEs 
descended as Pb > Cr > Ni > Cu > Zn > Cd for surface water and Cu > Zn > Cr > Pb > Ni ≥ Cd for sediment 
while all concentrations are with WHO limit except Cr across the sampling points. The principal 
component analysis (PCA) revealed difference correlation level suggesting PTEs of lithogenic and 
anthropogenic sources. Continuous environmental monitoring is required to ensure environmental 
sustainability.  
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parent materials with or without biological importance to living organisms (Carvalho et 

al., 2022; Pan et al., 2018). PTEs are environmentally concerned due to their persistence, 

toxicity, bioaccumulation, and biomagnification (Marin et al., 2022). At high 

concentrations, they pose health risks to organisms, including humans (Afolabi et al., 

2022). 

The persistent and accumulation of PTEs in the environment have been highly influenced 

by anthropogenic activities mineral resources development, metal processing and 

smelting, industrial emissions, application of fertilisers and pesticides, sewage irrigation, 

and landfill systems and remains a global issue of interest (Chen et al., 2015; Afolabi and 

Eludoyin, 2021). However, the naturally occurrence actions such as such as metal 

corrosion, atmospheric deposition, soil erosion of metal ions, volcanic eruptions and 

weathering and their contribution to the environmental concentration of PTEs should be 

considered (Omutange et al., 2022; Goher et al., 2019; Sharma et al., 2021). The PTEs 

concentration in the aquatic environment could be as a result of anthropogenic actions 

such as urbanisation and industrialisation or nature-related activities; however, 

anthropogenic contribution has significantly increased in recent centuries. 

The PTEs concentration and sources should be consistently and accurately monitored for 

sustainable management of the aquatic system (Custodio et al., 2020). The aquatic 

environment can be assessed based on the water and sediment of the ecosystem (Salem 

et al., 2015), and the outcome can support the management of the environment (Afolabi 

et al., 2022). Different procedure and statistical analysis techniques are used to 

determine PTEs sources and concentration in the aquatic environment (Ates et al., 2020). 

The multivariate statistical techniques such as cluster analysis (CA), principal component 

analysis (PCA), factor analysis (FA), Hierarchical Cluster Analysis (HCA), and Pearson 

Correlation Coefficient (PCC) have been widely accepted as efficiently tools in terms of 



Afolabi et al., 2025  Ecotoxicology and Environmental Health 

15 
 

data analyzing and interpreting and have been used to find relationships between 

elements and determine their sources (Zhang et al., 2016; Ustaoğlu & Islam, 2020; Ates 

et al., 2020; Zeng et al., 2022; Afolabi et al., 2023a, Afolabi et al., 2024). Okulu-river have 

been supporting various anthropogenic activities within and beyond the environment 

such as serving as the wastewater receiving river for various industries, abattoirs and 

sand mining which suggest the need for monitoring program. Therefore, the study 

intends to carry out preliminary quantifications of the PTEs in the surface water and 

sediment of the river and identify the source allocations of PTEs using statistical 

techniques. 

Method and Materials 

Study Area 

The study was undertaken within Okulu-Aleto, Eleme Local Government Area, Rivers 

State of Nigeria. Eleme is located between latitude 4˚ 44ˈ0”N and 4˚50ˈ0”N and longitude 

7˚6ˈ0”E and 7˚12ˈ0”E (Figure 1). It covers an area of 138 km2 and, as of the 2006 census, 

had a population of 190,884. The area's climate condition is endowed with abundant 

sunshine and rainfall due to its location near the equator, which can also influence the 

rate of dispersing and environmental fate of the pollutants. Considering various activities 

surrounding the Okulu-river such as activities of petrochemical industrial, abattoir, sand 

mining, fishing and other human activities that influence the water chemistry and such 

makes the river important for the study. The map of the study area and sampling points 

was presented in Figure 1. 
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Figure 1: Overview of the Study Area and Sampling Points  

Sample Collection 

The samples were collected in 21st February 2024 from four sampling points for surface 

water and three sampling points for the sediment (Table 1). 

Table 1: Sampling Points Details and Geographical Information 
Description Code Latitude Longitude 

Surface Water Details 

Point Source PS 4° 48' 40.500" N 7° 6' 29.900" E 

Surface Water Point 1 SWP1 4° 48' 29.177" N 7° 6' 2.543" E 

Surface Water Point  2 SWP2 4° 48' 28.399" N 7° 5' 28.621" E 

Surface Water Point  3 SWP3 4° 48' 54.573" N 7° 4' 40.533" E 
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Sediment Details 

Sediment Point 1 SDP1 4° 48' 23.547" N 7° 6' 3.276" E 

Sediment Point 2 SDP2 4° 48' 22.635" N 7° 5' 28.416" E 

Sediment Point 3 SDP3 4° 48' 48.379" N 7° 4' 41.823" E 

 

Surface Water: , based on the method described by Ogbonna et al. (2021) and Pan et al. 

(2018). For the surface water, a sterilised transparent bottle was plunged into the water 

about 30cm deep, and the bottle was filled to the brim and covered before bringing out 

the bottle. This was repeated at four different points (sub-composites) about 25m apart, 

all in the opposite direction of water flow. All the sub-composites (4) were mixed to form 

a composite sample for each creek and placed in an ice box before transporting to the 

laboratory (Integrated Scientific and Engineering Solutions Limited) for analysis. 

Sediment: The sediment samples were collected across the three sections of the river with 

the aid of an Eckman grab, dip down into each medium and turned 360° before being 

withdrawn and samples taken. At each section, 3 sediments samples were randomly 

collected  to make the composite sample and a total of 3 composite samples were 

collected across the sample area. Collected samples were instantly wrapped in foil papers 

and appropriately label and taken to the laboratory for analysis. 

Laboratory Analysis 

The PTEs such as Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Zinc (Zn), Lead 

(Pb) and Iron (Fe) along with physiochemical properties such as pH and electrical 

conductivity (EC) were analysed for surface water and sediment. All the parameters were 

analysed based on American Public Health Association standard-APHA (APHA, 2012) and 

American Standard for Testing Materials- ASTM (ASTM, 2012) accepted standard 
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procedures and analytical method described by Afolabi et al. (2022), while the PTEs 

concentration was determined by absorption spectrometer (Perkin Elmer 3100 model). 

Quality assurance/control (QA/QC) ensures that analyses are done at standard 

procedures, triplicate analyses and mean estimation for accuracy and precision. All 

analyses were subjected to quality reagents while instruments were sterilized, soaked in 

10% HNO3 in 1% HCl solution, washed adequately with deionized water, and desiccated. 

Detection limits, including LOD and LOQ, were estimated as LOD = 3 σ/S, LOQ = 10 σ/S, 

respectively, where σ is the SD (standard deviation) of analytical blank measurement (n 

= 18). At the same time, S is the slope of the calibration curve (y = mx + b) (Ahmad et al., 

2021). 

Data Analysis 

Descriptive statistics such as mean value was adopted, and the findings were presented 

through tables and charts. The source and distribution of PTEs across the surface water 

and sediment were analysed through statistical tools such as Pearson's Correlation 

Coefficient (PCC) and Principal Component Analysis (PCA) using the Statistical Package 

for the Social Sciences (SPSS) version 21 platform.  

Result and Discussion 

Concentration of PTEs in the Surface Water and Sediment 

The concentration of PTEs in surface water and sediment of the study area was presented 

in Table 2. The pH reported for the surface water across the sampling points were below 

the WHO limit for surface water and within the range of 6.27 – 6.65 which indicated the 

pH tends toward neutral. Similarly, the pH of the sediment across the sampling points 

ranged from 6.54 – 6.85 tends toward neutral and within the WHO limit. The reported pH 

was lower than those reported by Afolabi and Adesope (2022) at 3.35 – 5.13 for surface 

sediment from similar environment. The pH range reported in the present is similar to 
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those reported by Afolabi et al. (2024) and Ngah et al. (2017) at 6.28 and 6.40 respectively 

while lower to the value reported by Onojake et al. (2015). According to Ngah et al. 

(2017), pH tending towards neutral suggests evidence of the presence of waste material 

which is an attribute to human activity. This may also be attributed to watershed and 

other human activities. The EC reported for surface water across all the sampling points 

exceeded the WHO limit for surface water. Similar outcome was observed among the EC 

concentration of sediments at the upstream and midstream while those reported for 

downstream and composite sample are within the WHO limit. The concentration 

reported therein was lower than those reported by Onojake et al. (2015) and Ngah et al. 

(2017). 

Table 2: Concentration of PTEs in Surface Water and Sediment  
 Surface Water (mg/l)  Sediments (mg/kg)   

PTEs PS 
SWP-

1 

SWP-

2 

SWP-

3 
CS Mean SDP-1 SDP-2 SDP-3 CS Mean WHO 

pH 6.41 6.65 6.27 6.39 6.60 6.464 6.54 6.83 6.85 6.94 6.79 
6.5 – 

8.5 

EC* 6330 8900 15440 17070 13740 12296 1,715 2090 829 873 1376.75 1000 

Cd <0.001 <0.001 0.001 0.015 0.001 0.005 <0.001 <0.001 <0.001 <0.001 - 0.03 

Cr 0.097 0.097 0.139 0.139 0.139 0.122 0.265 0.223 0.265 0.307 0.265 0.1 

Cu 0.039 0.049 0.059 0.059 0.049 0.051 5.574 0.128 0.118 0.108 1.482 2.0 

Ni <0.001 0.013 0.077 0.093 0.061 0.061 <0.001 <0.001 <0.001 <0.001 - 0.07 

Zn 0.076 0.046 <0.001 0.015 0.021 0.039 3.097 0.204 0.843 0.716 1.215 5.0 

Pb 0.007 0.081 0.230 0.156 0.156 0.126 0.081 0.007 0.156 0.230 0.1185 0.01 

Fe 0.211 1.942 0.084 0.321 0.084 0.528 22.27 18.90 23.24 23.29 21.925 0.3 

*concentration in µs/cm 
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For the PTEs reported for the surface water, the mean concentration showed that the 

PTEs descended as Pb > Cr > Ni > Cu > Zn > Cd and all concentration are within the WHO 

limit. The PTEs of the sediment shows that the mean concentration descended as Cu > Zn 

> Cr > Pb > Ni ≥ Cd and all concentration are within the WHO limit except Cr across all 

sampling points and Cu at the upstream sampling point. The outcome was similar to those 

reported by Ali et al. (2016) and Onojake et al. (2015) which reported higher 

concentration of Cr in their study. Cr has no biological function linking human 

physiological activities; hence, regarded as non-essential to humans/mammals. Cr in its 

compounded forms, such as chromates of Ca, Zn, Sr, and Pb, are highly soluble in water, 

toxic and carcinogenic (Nwaichi et al., 2016). Ali et al. (2016) suggested that Cr 

concentration in sediment was higher than other metals as a consequence of direct 

discharging untreated wastes from petroleum, fertilizers and textile industries. 

According to Afolabi et al. (2024), excessive concentrations of PTEs are attributed to 

anthropogenic activities such as industrial discharge and engagement of resources from 

the environment, which increases the health risk such as anaemia and cancer, nervous 

system and kidneys, allergies, cardiovascular and kidney diseases, lung fibrosis, and lung 

and nasal cancer (Mugica et al., 2002, Tiwari et al., 2015; Bazrafshan et al., 2015; Afolabi, 

2024), 

Source Apportionment Analysis for Surface Water and Sediment 

The source and distribution of PTEs across the surface water and sediment were analysed 

through PCA, PCC, rotation component matrix of HM, and screen plot, which are 

summarised and presented in Tables 3-4 and Figure 2-3. The Pearson correlation mix of 

the surface water indicated that Cd has a significant and relatively strong relationship (> 

0.5) with Cr and Ni with a correlation coefficient (r) of 0.536 and 0.612 respectively and 

week and negative relationship with Cu (-0.031), Zn (-0.317), Pb (0.242) and Fe (-0.146). 
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Also, Zn and Fe showed significant weak (and negative) relationship with other PTEs. 

Furthermore, a significant and positive relationship exist between Cr and Cu (r = 0.710), 

Ni (r = 0.981) and Pb (r = 0.895), between Cu and Ni (r = 0.684) and Pb (r = 0.945) and 

between Ni and Pb (r = 0.864). According to Afolabi et al. (2023), PTEs of strong 

correlation indicated similar sources and distribution patterns noted among Fe, Ni, Se, Zn 

and Cu. In same vein, Ustaoğlu et al. (2020) asserted that the lack of correlation between 

and among parameters indicate a  lack of mutual forms of source and distribution pattern. 

Table 3: Pearson's Correlation Coefficient (PCC) Analysis 
 Cd Cr Cu Ni Zn Pb Fe 

Surface Water      

Cd 1.000       

Cr 0.536 1.000      

Cu -0.031 0.710 1.000     

Ni 0.612 0.981 0.684 1.000    

Zn -0.317 -0.910 -0.915 -0.917 1.000   

Pb 0.242 0.895 0.945 0.864 -0.975 1.000  

Fe -0.146 -0.573 -0.095 -0.488 0.297 -0.295 1.000 

Sediment      

 Cr Cu Zn Pb Fe   

Cr 1.000       

Cu -0.003 1.000      

Zn 0.163 0.976 1.000     

Pb 0.948 -0.263 -0.074 1.000    

Fe 0.866 0.108 0.318 0.881 1.000   
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Table 4: Rotation component matrix of PTEs across the Environmental Mediums 
 Surface Water  Sediment 

 PC 1 PC 2 PC 3  PC 1 PC 2 PC 3 

Cd 0.085 0.995 -0.061     

Ni 0.760 0.529 -0.355     

Cr 0.776 0.445 -0.446  0.982 0.068 -0.178 

Cu 0.993 -0.115 0.023  -0.079 0.996 -0.036 

Zn -0.953 -0.228 0.159  0.110 0.991 0.074 

Pb 0.971 0.150 -0.162  0.982 -0.185 0.022 

Fe -0.128 -0.075 0.989  0.927 0.194 0.322 

Eigenvalues 4.851 1.252 0.036  2.828 2.042 0.130 

% of Variance 57.716 22.301 19.409  56.115 41.033 2.852 

Cumulative % 57.716 80.016 99.425  56.115 97.148 100.00 
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Figure 2: Scree plot of eigenvalues after PCA and rotated component matrix of PTEs in 
Surface Water 
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Figure 3: Scree plot of eigenvalues after PCA and rotated component matrix of PTEs in 
Sediment 
 
For the surface water, the principal component (PC) of the PTEs showed strong positive 

correlation for Ni:0.760, Cr:0.776, Cu:0.993 and Pb:0.971 for PC1, Cd:0.995, Ni:0.529 for 

PC2 and Fe:0.989 for PC3 while negative or weak positive correlation was common with 

Zn across the PCs, Cd with PC1 and PC3, Ni with PC3, Pb and Cr with PC2 and PC3. The 

eigenvalues indicated that the PC1 and PC2 has > 1 and PC1 has 57.716 % of the total 

variance capable of explaining the factor. For the sediment, the PC of the PTEs showed a 

strong positive correlation for Cr:0.982, Pb:0.982 and Fe:0.927 for PC1, Cu: 0.996 and 

Zn:0.991 for PC2 while negative or weak positive correlation was common with PC3. The 

eigenvalues indicated that the PC1 and PC2 has > 1 and PC1 has 56.115 % of the total 

variance capable of explaining the factor. According to the Liu et al. (2022), PTEs sources 

can be categorized based on the extent of positive loading value with 0.75 - 1.0 being 

strong positive loading, 0.5 - 0.75 moderate positive loading (0.5–0.75), and weak 
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positive loading (0.3–0.5). Therefore, the PTEs in PC1 and PC2 of the surface water (such 

as Ni, Cr, Cu, Pb and Cd) and sediment (such as Cr, Cu, Zn, Pb and Fe) are presumed to be 

an anthropogenic source related with industrial activities. The outcome was similar to 

the study conducted by Zeng et al. (2022) and Afolabi et al. (2024). Furthermore, Chen et 

al. (2022) suggested that a weak positive and negative values of PTEs across the PCA is a 

confirmation of the influence of multiple sources. Also, PTEs with similar(strong and 

positive OR weak and negative)  correlation suggest similar sources and transport 

pathway (Hu et al., 2020; Ustaoglu et al. 2020; Chen et al., 2022). The difference in the 

PTEs correlation for surface water for suggest difference sources and patherns such that 

Ni, Cr, Cu and Pb in PC1 are lithogenic source while Cd, Zn and Fe are anthropogenic 

source. For sediment, PTEs such as Cr, Pb and Fe suggest lithogenic source while Cu and  

Zn suggest anthropogenic source. The outcome is similar to the findings reported by Zeng 

et al. (2022) and Wang et al. (2020). Overall, PTEs find their way into the aquatic 

environment through various sources including atmospheric deposition and series of 

anthropogenic activities (Shen et al., 2019, Afolabi, 2024). 

Conclusion 

Having considered the apportionment of PTEs in the aquatic environment based on 

multivariate statistical techniques such as principal component analysis (PCA) and 

Pearson Correlation Coefficient (PCC), the study deduced that various human activities 

have contributed to the concentration of the PTEs in the surface water and sediment of 

the aquatic environment; however, the concentration are within the WHO allowable limit 

except for Cr and Cu in the sediment. The PC analysis of the PTEs further established that 

the PTEs in the aquatic environment has both the lithogenic and anthropogenic influence. 

There is need for continuous monitoring of the aquatic environment for effective 

sustainability that will ensure safety of the aquatic organism and human being at large. 
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List of Abbreviation 

Cd Cadmium 

Cr Chromium 

Cu Copper 

Fe Iron 

Ni Nickel 

Pb Lead 

PCC Pearson Correlation Coefficient 

PS Point Source 

PTEs Potentially Toxic Elements  

PCA Principal Component Analysis 

SWP Surface Water Point  

Zn Zinc 
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